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Abstract-A closure model for turbulent shear flows based exclusively on conditional moments and the 
intermittency factor is developed. The model contains the equations for intermittency factor, the turbulent 
zone and non-turbulent zone mean velocities and kinetic energy and dissipation rate for the turbulent zone. 
The model is applied to the prediction of plane jets and boundary layers and gives satisfactory results for 

intermittency factor and first order moments. 

NOMENCLATURE 

c,, c,, c3, c4, 

3 

CD9 CE19 CE2) CE3, turbulence model constants; 

Cmlt Gm 
flux o y defined in equation (29); 

coordinate directions; 
intermittency factor; 
dissipation rate ; 
scalar. 

domain; 
point set defined by equation (3); 
flux ; 
interface term, function ; 
indicator function ; 
kinetic energy; 
natural logarithm; 
normal vector of interface; 
probability density function ; 
pressure ; 
source; 
interface expression defined in equation 
(3), source term ; 
time ; 
unitary transformation; 
velocity ; 
relative progression velocity of interface; 
Cartesian coordinates ; 
Laplace operator ; 
ensemble average. 

Greek symbols 

6, Dirac function ; 

:, 
dissipation rate; 
scalar variable ; 

4% value of Q ; 
l-9 diffusivity ; 

Y, intermittency factor ; 
i 
i, 

Taylor scale ; 
macro-scale ; 

V, kinematic viscosity ; 

Pt density ; 
0, Prandtl number ; 

W,, vorticity. 

Subscripts 
k, kinetic energy; 
t, turbulent ; 

Superscripts 

s, interface ; 
unconditional average; 

E 
f turbulent zone average; 

= non-turbulent zone average; 
* 

0: 

turbulent zone fluctuation ; 
non-turbulent zone fluctuation ; 
unconditional fluctuation. 

1. INTRODUC’HON 

TURBULENT shear flows exhibit an intermittent charac- 
ter in the neighbourhood of free boundaries. This was 
first established experimentally by Corrsin [l] and 
since then a large amount of experimental data for 
various shear flows has been gathered [2-91. The 
theoretical treatment of intermittently turbulent flows 
however proved difficult in particular since certain 
aspects of it lead to the statistics of multi-valued 
random functions [lo, 111. The first attempts to estab- 
lish closed equations for the intermittency factor and 
selected conditional moments are due to Libby 
[12,13] who based his model however on a guessed 
transport equation for the intermittency factor. Do- 
pazo [14] showed how to derive the exact equations 
for intermittency factor and conditional moments. 
After that several closure models have appeared in the 
literature [15,16] which will be discussed in Section 2 
of this paper. 

It is well known that in turbulent shear flows of 
boundary layer type the intermittency factor follows 
closely a Gaussian distribution and there seems to be 
little reason to develop a closure model predicting it as 

*Current address: Inst. for Thermodynamics, NTH 
Trondheim, Norway. 

t Current address : Dept. Mech. Engng UCD, Davies, CA 
95616, U.S.A. 

1811 



solution of a complex system of partial differential 
equations. However, there are at least two classes of 
turbulent flows where the intermittent character is of 
primary importance and where a Gaussian distri- 
bution cannot be assumed: transitional flows and 
flows with fast chemical reactions. The closure model 
to be developed in this paper should provide a basis for 
an improved prediction of such Rows but does not 
directly address them. 

Finally it should be noted that any closure model of 
moment equations involves, in some form or other, 
assumptions concerning the probabi~ty density func- 
tion (pdf) of fluctuating variables. If the fluctuations 
show an intermittent character the contribution from 
one of the zones (“non-turbulent”) may produce a 
nearly-singular part of the pdf which in turn makes the 
pdf strongly non-Gaussian and any assumption based 
on quasi-Gaussian behaviour will fail. Conditioning of 
the variables allows the removal of such spikes in the 
pdf and consequently are closure assumptions based 
on quasi-Gaussianity better suited for conditional 
variables. 

2. CONDITIONAL MOMENTS AND I~ER~i~~~~~ 

The description of the intermittent structure of 
turbulent flows requires several definitions based on 
the notion of a detector or discriminator variable. 
These quantities will be discussed first. Constant 
density will be assumed unless stated otherwise. 

2.1. Discriminating scalars and interfaces 
Consider a fluctuating scalar cP(x, t) which satisfies 

instantaneously the transport equation 

and which is non-negative. In order to serve as 
discriminator Q, should satisfy two conditions: 

(i) Q should be below a small (compared to a 
turbulent reference value) threshold value in the non- 
turbulent region of the flow and be well above the 
threshold in the turbulent zone. 

(ii) Cp should grow with the turbulent zone. 
By stating these conditions it was implicitly assumed 

that the turbulent “state” of the flow could be defined 
uniquely. This is by no means straightforward 
(Lumley and Panofsky, [17]) but for the present 
purpose the properties random and vertical are used 
to define the turbulent state. This definition of turbu- 
lence leads to the choice of discriminator enstrophy: 

cD(x, t) 3 w;U&, (2) 

or any monotonically non-decreasing function of it, 
where w: is the fluctuating vorticity component. The 
measurement of vorticity is however quite difficult and 
therefore a class of scalars like temperature, colour, 
density are accepted as discriminators in suitable 
circumstances. This raises however the question whe- 
ther both conditions stated above are satisfied for 

scalars different from (2). in particular for scalars that 
are instantaneously strictly conserved is no reason :CI 
believe that their growth (and hence the growth of the 
region where (p is above the threshold) will be the same 
as (2). Therefore we will use (2) in the following a% 
discriminator. 

Consider the solution @(x, t) of (1) for given malt. 
zation of the velocity field c,(x, t) and the boundary 
conditions for (9. For differentiable cZ and sufl’icientfy 
smooth boundary conditions the solution tf, will be 
differentiable and then the set of points F,(t) for which 

S(x,r;cp)r~(X.t)---~-0, t31 

and which can be approached as limit of points @(p. 1) 
< 4, is a surface in the flow domain D. If 4, is ;t 
discriminating scalar and if the threshold d, > 0 is 
sufficiently small this surface can be regarded as 
mathematical model for the turbulent-non-turbulent 
interface. The real interface has a finite thickness which 
was estimated by Corrsin and Kistler [l] as being of 
the order of the Kolmogorov microscale. Only for the 
limit case of the turbulent Reynolds number going to 
infinity can we expect to encounter sharp (zero 
thickness) interfaces because the governing (instan- 
taneous) equations allow only for this limit discon- 
tinuous (with respect to the discriminating scalar) 
solutions. The interface as defined above will therefore 
be contained within the physical interface and follow 
its movements. 

2.2. Conditimal statistics 
Conditional statistics are a necessary tool for the 

description of intermittently turbulent flows. Only 
single point statistics will be considered here, and 
questions concerning geometrical properties of the 
interface such as distance from a coordinate plane 
leading to statistics of multi-~~alued functions (see [IO, 
111) will be excluded. The interface will be assumed 
differentiable with probability one. Then consider the 
point (x, r) in the flow domain and define the indicator 
function 1(x, t) as usual ([l, 141) by 

l(x,t; 4, z i” if S(x. t) 2 0 

itI otherwise 
(4) 

where 4 >, 0 is the threshold value of the discriminator 
0. The propagation velocity of the interface F&t) is 
defined by 

where x”, is a point of the interface. Then the indicator 
function [lS] follows, viz: 

where V is the relative progression velocity of the 
interface 

Vu, = L’, - z+; (6) 

and II, is the normal vector of F+(r) positive into the 
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region with I = 1. The normal is defined and unique 
with probability one which does not exclude however 
the occurrence with zero probability of intersection 
points with several different values of n,. The two basic 
rules for manipulating the indicator function [18] then 
follow : 

and 

aI 
- - v;n,qsj 

at- 
(8) 

which were already applied to derive equation (5). 
Denoting ensemble averages by angular brackets we 
can split any fluctuating quantity 4(x, t) in three 
different ways : 

4 = (4) + 4’ (9) 

where I#’ is the unconditional fluctuation ; 

l$=J+qb* (10) 

where 6 denotes the turbulent zone average defined by 

6 = (I+>l(O; (11) 

and 

4=J+f/P (12) 

where 6 denotes the non-turbulent zone average 
defined by 

4 = ((1 - O#J>/(l - (0). (13) 

The average (I) of the indicator function is the 
intermittency factor and denoted by y. From [9] and 
[13] follow various useful relations between con- 
ditional variables which are summarized in the 
appendix. 

2.3. Conditional moment equations 
The exact moment equations required for the de- 

velopment of the closure model will be given without 
derivation. The intermittency equation and the equa- 
tions for conditional mean velocity and conditional 
turbulent kinetic energy can be found in [ 121 and [14], 
with a discussion of their properties. The equations for 
the intermittency factor y can be obtained by ensemble 
averaging equation (5) for the indicator function and 
the result can be given as 

ay $+iFaa,=l n ax [Y(l -Y)(vZ, - $,)I + S, (14) 
1 

with source term S, 

s, = (VS(S)). (15) 

This term may still include diffusive, productive and 
destructive contributions and represents the mean 
entrainment of non-turbulent fluid into the turbulent 
zone. Furthermore it is possible that S, depends on the 
choice of the discriminating scalar 0 in particular 

whether 0 is strictly conserved or not. The equation for 
the turbulent zone mean velocity follows from the 
moment equations by multiplication with I, averaging, 
and applying (AI-AH). The result can be cast in the 
form 

The term P, includes all influences of the interface 
fluctuations on the conditional mean velocity and 
consists of 

(17) 

For the closure model and in order to gain a better 
understanding of the terms in equation (17) the 
equation for the non-turbulent zone mean velocity gfl 
shall be given too. For the case that the non-turbulent 
zone has non-zero vorticity but the fluctuations vz 
have zero vorticity this equation follows as 

where 

and 2 E +vXv~ denotes the kinetic energy of the 
irrotational fluctuations. The first terms in equations 
(17) and (19) have opposite signs if a$&$ and dEJJdx, 
have the same sign as can be expected in shear layers 
(jets, boundary 1ayers)and then these terms represent a 
momentum exchange between turbulent and non- 
turbulent zones. The second term may have the same 
sign for both zones. In the high shear region of 
boundary layer flows the spatial derivative of y is 
proportional to the crossing frequency of the interface 
and then the second terms in equations (17) and (19) 
can be interpreted as momentum sources due to the 
interface motion. Note that the second term in (17) is a 
momentum sink if the shear layer is a momentum 
defect flow (boundary layer, wake) and a momentum 
source if it is a momentum excess flow (jet). Finally, 
equations (17) and (19) contain various point- 
statistical correlations which have the same structure 
but opposite signs. These can be interpreted [14] as 
momentum flux through the interface. 

The condition of zero vorticity for the fluctuations 
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08 has not been introduced into (19) but leads to the 
independent CorrsinKistler [ 141 equations : 

- t.pL$rta)G(S)>. (20) 

The transport equation for the turbulent zone 
Reynolds-stress tensor tXj%~ can be given in the form 

+q$yj-&ii;;,. (21) 

The symbol t?XB denotes the turbulent zone dissi- 
pation rate tensor defined by 

e 

(22) 

and F,, represents the collected interface terms : 

+ ; ~u:vpvS)~ + ((ofnil + u;n,)p*G(S)) /I 

(23) 

with S;. given by (15). Contraction of indices leads to 
the equation for the conditional kinetic energy of 
turbulence r 

(24) 

The interface term F, = F,; and IS grven b) 

It is worth noting that the redistributive correlation of 
pressure and rate of strain in (21) does not contribute 
to the balance of the conditional kinetic energy 
because the divergence 

but is non-fluctuating. Similarly follows the equation 
for the trace Eof the dissipation rate tensor using the 
relations given in the Appendix. It can be cast into the 
form 

and the interface term is given by 

(28) 

The interface terms F, and F‘, have the same 
structure as (26) and (28) show. The first term is as for 
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(16) a consequence of the introduction of the uncon- 
ditional mean velocity in the convective part in (25) 
and (27). The second term is the product of the 
turbulent flux of Ear Erespectively, times the gradient 
of the intermittency factor. The third term represents a 
reduction of I? and z due to the entrainment of non- 
turbulent fluid. The last term group contains the 
production/destruction of E and Zat the interface and 
the transport through it. 

3. CLOSURE MODEL 

A closure model on the basis of the k - c model 
initiated by Jones and Launder [19] will be developed 
for incompressible flows. The complete model will 
consist of a set of modelled equations for the in- 
termittency factor plus turbulent zone mean velocity, 
kinetic energy, dissipation rate and non-turbulent 
zone mean velocity. Unconditional qualities such as 
mean velocity can be computed with the formulae 
given in the appendix. 

3.1. Intermittency equation 
The intermittency equation (14) contains two terms 

that require closure assumptions. The first is the 
transport of y due to the relative motion of turbulent 
and non-turbulent zones: 

D, = -y(l - y,(ua - v’,,. (29) 

This term could be considered closed if the crossflow 
component of the mean velocities was included in the 
model. For boundary layer type flows however the 
determination of these components becomes very 
inaccurate and therefore a model expression for this 
term is proposed. For boundary layer type shear flows 
the expression 

holds, where y is the crossflow coordinate. The 
coefficient of this derivative should then have the 
dimension of a (turbulent zone) viscosity and thus 

with F(y) still to be determined. This expression would 
however contradict the experimental evidence in para- 
bolic flows [3, 7, 81 where Ii - I?[ > Ii - v’(. The 
reason for it is that an important contribution to the 
flux of y due to the inhomogeneity of the mean velocity 
has not been included (see Lumley [ 151). The complete 
model should be: 

For parabolic flows the velocity difference in longi- 
tudinal direction is not required and for the crossflow 
component the second part can be neglected. There- 
fore, only F,(y) has to be determined. The limits of (Z= 
- v’,) for y -+ 0 and y + 1 indicate what F,(y) should 
be. From the fact that 1~; - cZl does not necessarily 

approach zero as y + 0 whereas [ 31 117~ - o",l+ 0 as 
y + 1, it follows that D, should approach zero faster 
for y + 1 than for y + 0. Hence for the crossflow- 
component of D, the following are suggested: 

and 

For complex turbulent flows however the equations 
for all mean velocity components will be solved and 
then (30) can be avoided. 

The modelling of the intermittency source S, re- 
quires more detailed considerations. Several models 
have been proposed so far. Libby [12] proposed the 
expression 

8 

;( > 

~ !!El 3:4(1 _y)!?, 
u2 A 

where U is a reference velocity and A is a length scale of 
the order of the width of the shear flow. Chevray and 
Tutu [9] suggested a modification of Libby’s model 

rs 
S, 2 2C,y(l - y,, 

with C, = 3.447, and the length scale A = rliZ the 
half-width of the round free jet which they studied 
experimentally. In the analysis of the conditional pdf of 
a passive scalar I’ in a non-buoyant turbulent plume 
O’Brien [16] suggested the model 

S,r c;Y(r)P(o+) 
1s 

where D is the molecular diffusivity of I, 1, is a 
turbulent micro-length scale for I, and P(O+) denotes 
the limit from I > 0 of the turbulent zone pdf P of the 
r-fluctuations. Libby’s model produced good agree- 
ment between calculated and measured intermittency 
factor and conditional mean velocity. It was applied 
however only to self-similar flows and unconditional 
flow variables were prescribed [12]. Furthermore is 
this model neither Gahlei-invariant nor applicable to 
complex flows where 0 might change sign? O’Brien’s 
model is of limited use also, since the value of P(r) 
approaching zero from r > 0 might not be bounded as 
the example beta-function 

p(r) = yl 

p-1(1 _ r)P-1 
osr<i 

J drra-‘(1 - I-y-1 
0 

shows, which leads to P(O+) -+ zo for 0 < a < 1 
without an atomic contribution to the unconditional 
pdf at I- = 0. Furthermore, it would require modelling 
of P(O+) in a set of equations not containing the pdf. 
The model suggested here consists of three 
contributions : 

s, z sy + SP) - sy’ , ’ (31) 
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and each contribution will be discussed in turn. 
The first part of S., is 

far downstream and for the calculations of these flows A 
was set zero. The final result for the intermittency 
equation is then for parabolic plane flows 

and is based on the following considerations. The 
production of y should be proportional to the pro- 
duction of kinetic energy of turbulence because an 
increase of k” implies an increase of vorticity fluc- 
tuations and therefore a production of the discrimi- 
nator (2). This production of 7 will however depend on 
y itself, because the term (32) must not violate the 
realizability condition for 7, viz. 0 < ;I < 1. This leads 
to F&r = C ~(1 - v) in lst-order. For turbulence 
models based on the turbulent viscosity concept the 
resulting form is for parabolic flows (x,-dominant flow 
direction) 

The second part of S;. is: 

The production of y should be proportional to the 
gradient of 7. In fully developed shear flow turbulence 
a rapid variation of 7 implies slow movement of 
turbulent fluid in the direction of the gradient of 7 but 
rapid orthogonal to it, hence strong anisotropy. Since 
anisotropy of the Reynolds-stresses is counteracted by 
a part of the pressureestrain rate correlations this 
process must be accounted for in the y-equation too 
and is represented by (34). This term can be interpreted 
as a non-linear convection which implies that (34) will 
not violate the realizability condition for above y as 
long as y is at least twice continuously differentiable. 
Hence reduces F{f: in lowest order to a constant. 

The third term St3j is: 

B 
$3'=C F(3)_ 
I) 3 (Y) 

IF 
(35) 

Consider a positive threshold value y of the discrimi- 
nator defining the interface (3) and a homogeneous 
turbulence which is not maintained by external forces 
or boundary conditions. If initially 7 = 1 then the 
equation for ;’ is 

Realizability requires Fc3) to be proportional to 7 
and in the limit 4 + 0 to be proportional to 1 - ; 
because @ = 0 would not be reached within a finite 
time interval. But for non-zero threshold values the 
discrimination will slip under the threshold within a 
finite time interval. Therefore the function F&’ is 
qT,)=y(l --?+A), where A depends on 4. For 
developing shear layers and non-homogeneous flows 
however the influence of A becomes negligible except 

+ c 
-- C,i’(l - 7): (36) 

t 

The model constants are summarized in Table 1 

3.2. Conditional moment equatkms 

The closure of the turbulent zone momentum 
equation (16) and the equations for the turbulent zone 
kinetic energy (25) and its dissipation rate (27) is based 
on the concept of turbulent viscosity as applied by 
Jones and Launder to the k-c model [19]. In fact the 
same closure assumptions will be employed but for 
turbulent zone moments only. For the momentum 
equation (16), in the dominant flow direction Y two 
closure assumptions are required. The turbulent zone 
shear stress is expressed as 

analogous to the unconditional model (but not a 
consequence of it). The second term F, in (16) however 
does not have a counterpart in the unconditional 
equation and the last part of (17) requires therefore a 
new closure assumption. The interface terms in ( 17) are 
modelled by 

and with (30). (37) the model for ( 17) after rearrange- 
ment is then 

The form (38) suggested for the interface terms IS 
based on the assumption that they are dominated by 
the mean strain rate in the turbulent zone and the 
gradient of the intermittency factor as a measure for 
the crossing frequency. The resulting model (39) acts in 
shear layers as a momentum sink if the non-turbulent 
flow is faster and as source if the turbulent flow is faster 
and therefore increases the spreading rate of the 
turbulent zone. The resulting closed equation for the 
turbulent zone mean velocity u” is then 

The equations for the turbulent zone kinetic energy 
R and its dissipation rate require one additional 
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modelling assumption. The model for F, follows from 
(30) (37) and the expression 

(k*v6(S)) + (upping) - v c > n,~W) 
1 

- v; (k*n,G(S)) 2 C,,Y(l - Y)c’ 
01 

for the interface terms as 

+;(v3_S.)~+C,,(l -Y)cs (41) 

where S, is given by (31)-(35). 
In the same manner the model for F, is obtained as 

With these two expressions the closed equations for 
the turbulent zone kinetic energy and its dissipation 
rate follow as: 

;+ F, (43) 

and 

The turbulent zone pseudo-viscosity is then anal- 
ogously to the unconditional case defined by 

I? 
y3 = CDT (45) 

E 

The closed equations for turbulent zone mean 
velocity (40), kinetic energy (43) and dissipation rate 
(44) reduce for Y approaching unity ro the uncon- 
ditional model if the first and second derivatives 
approach zero too. Experiments show that this can 
indeed be expected for fully developed shear flows [3, 
71, in which the Y-profile reaches a nearly-constant 
(unity) region in the centre part of the flow. 

The turbulent zone quantities however are not 
sufficient to determine unconditional moments as (Al) 
and (A7) prove. Therefore, the closure of equation (18) 
for the non-turbulent zone velocity is required for the 
calculation of the unconditional mean velocity. 

For the closure of equation (18) the stress tensor in 
the non-turbulent zone and the interface terms F, must 

be estimated. The experimental evidence in parabolic 
flows [3,7, 81 shows that the stress tensor cannot be 
neglected immediately because the normal stress com- 
ponents in the non-turbulent zone can amount to 40% 
of their turbulent zone counterparts. The shear stress 
in the non-turbulent zone however is much smaller 
than the turbulent zone shear stress and could be 
neglected. From this follows that no simple relation 
between the stress tensors in turbulent and non- 
turbulent zone can hold component-wise but possibly 
in more general tensorial form via the unitary trans- 
form T,, corresponding to a rotation of the local 
coordinate system 

Y 
0~~~ 2 const. f(Y) TZyZ$7& (46) 

The unitary transform T,, is determined by the 
angles between the principal axis of the stress tensors. 
For plane and axisymmetric flows the principal axis of 
the stress tensor in the non-turbulent zone is close to 
the gradient of the intermittency factor as the experi- 
ments show [7, 81. Hence is this angle given by the 

principal axis of 0% and the gradient of Y. For the 
kinetic energies, which are invariants of the two 
tensors, however follows the simpler relation 

t= c, f(Y)R (47) 

only requiring the knowledge of the constant and the 
function f(Y). The data for boundary layers [7, 81 
suggest for the constant a value of C, g 0.5 and for 

f(Y) = Y. 
The modelling of equation (18) however follows 

from the fact that the shear stress in the non-turbulent 
zone is an order of magnitude of smaller than the shear 
stress in the turbulent zone that the corresponding 
term can be neglected. This leaves the interface term 
(19) to be modelled. This term cannot be negligible 

because following from 3, 2 0 together with z 2 0 
is the existence of a laminar flow in the non-turbulent 
zone at Renumbers well in the turbulent regime which 
cannot be stable. Considering the order of magnitude 
of the terms constituting F, the first two are negligible 
in contrast to (17) where the stress tensor has to be 
kept. The approximation of an inviscid flow is reason- 
able for the non-turbulent zone in most cases (except 
transitional flows), thus the viscous terms in (19) are 
negligible and F, reduces to 

PZ --$ Y ((t@ + PO+w)>. 

Before suggesting any closure expression for this 
term the boundary conditions for the non-turbulent 
zone velocity must be considered. For fully developed 
turbulent shear flows the probability for a patch of 
non-turbulent fluid to reach the opposite boundary 
becomes very small and therefore the limit Y + 1 for 
non-turbulent zone quantities loses its meaning. 
However these quantities must still remain bounded for 
~1 if a boundary value problem for non-mrbulent 
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Table 1. Model constants 

Cl 0.2 (r 1.0 C,, 1.44 
C, 0.6 Ok 1.0 CZL I .95 
C, 0.1 

FL, 
1.3 C iz 1.5 

C, 0.5 0.7 C,, 2.5 
CD 0.09 

The values for C, Us, a,, C,,, C,, are standard values taken 
from the original k-i: model [l9]. 

zone variables is to be solved. On the rare occasion of a 

non-turbulent patch of fluid penetrating to the other 
parts of the boundary it must satisfy the same con- 
ditions as the turbulent eddies. Hence the boundary 
conditions for the non-turbulent zone velocity should 

be the same as for the turbulent zone quantity 

To satisfy this condition the interface term must 

therefore diffuse the momentum from the boundaries 
into the flow field and create/destroy momentum 
there. Recalling the alternative way of representing the 

Dirac function defined on the surface .7(x, t) = 0 as 
introduced by Dopazo [ 141 we can write for the first 

part of F,: 

(where uh is a sphere of radius 6 around x and r(u,) its 
volume) which can now be recognized as momentum 
flux across the interface per unit volume due to the 

fluctuations of the relative progression velocity b’ and 
represents therefore the divergence of a flux. Hence the 

model 

with 

is suggested. Since non-turbulent zone fluctuations 

decay rapidly with distance from the interface [20] the 

flux ,PX8 will be proportional to ;’ and thereforef(7) = 
;‘. The second part of F, containing the pressure 
fluctuations is neglected because p” is determined by 

large scale fluctuations whereas PI, corresponds to 
gradient fluctuations which are dependent upon small 
scale fluctuations whose correlations be expected to be 

weak. 
The closed equation for L? follows now as 

The constants are summarized in Table 1. 

4. APPLICATION 

The modelled transport equations for the intermit- 
tency factor and the turbulent zone and non-turbulent 
zone moments are discretized and solved using stan- 
dard finite-difference procedures [21]. The plane jet 

and the boundary layer on a smooth wall at zero 
pressure gradient are considered for comparison of 
calculation and experiment. 

4.1. Plurze !er 
The measurements of Gutmark and Wygnanskl I~-i 1 

in the plane jet provide an excellent basis for com- 
parison with the calculations. The boundary CM- 
ditions for this case are zero gradient conditions at the 

symmetry asis and Dirichlet conditions at the outer 
edge of the flow domain. At the jet pipe exit rectangular 

velocity profiles 17 = u’ and a small turbulence level 
were prescribed and the intermittency factor was set ti> 

;‘(I == 0.001 at this section. The intermittency factor 
develops downstream first in the plane shear layer 

until the core region of the jet has vanished and thep 

adjusts to the profile to be expected in the jet as shown 
in Fig. I. In the self-similar region (Fig. 2) !I:? 

intermittency factor agrees well with the experimental 

distribution. The bars in Fig. 2 give the variation of the 
experimental results if the measurements of Heskestad 

[5] and Bradbury [4] are taken into account. For ;tn 
ideal Gaussian distribution of ;‘(x) and no folding ol 

the interface. the cross-derivative of ,’ would (properi! 
normalized) be the Gaussian probability density func- 
tion of the interface position. The calculated i+;:i\ 

deviates from the measured crossing frequency LXX- 
siderably and shows that the calculated maximum I\ 

closed ttr , =-. 0.5 than the measured maximum, 

Indicating a stronger deviation from Gausslanity in the 

measurements. The unconditional and turbulent ione 
mean velocities in Fig. 3 show close agreement IX 
tween measurement and calculation. The cwreni 

L D 

FIG,. I. lmtial development ofintermittency factor m planejst 
over the range 0 < \-.I) < 10. 
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06- 

FIG. 2. Intermittency factor y and dy/dy in self-similar region 
of plane jet compared with measurements [3]. 

I! 
UO 

FIG 3. Turbulent zone (solid line) and unconditional (bro- 
ken line) mean velocities in plane jet compared with experi- 

ments [3] (symbols). 
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FIG. 4. Intensities of velocity fluctuations in plane jet (turbu- 
lent zone, solid line; unconditional, broken line) compared 

with experiments [3]. 

prediction model employing the concept of turbulent 
viscosity cannot be expected to give excellent results 
for 2nd-order moments. The fluctuation intensity of 
velocity in the turbulent zone and unconditional (Fig. 
4) normalized with the respective axial values shows 
the correct distribution across the jet but their 
difference is overpredicted in the outer part. 

4.2. Boundary layer 
For the calculation of turbulent boundary layers 

low Re number corrections must be introduced in 
order to represent properly the region close to the wall 
where the turbulent Re number drops to zero. The 
correlations suggested by Jones and Launder [ 191 are 
applied to the turbulent zone variables without modifi- 
cation. The boundary conditions used in the calcu- 
lations are Dirichlet conditions at both edges of the 
flow except for the intermittency factor which satisfies 
a zero gradient condition at the wall. The initial 
profiles are given by r = 0.001 and $x0, y) as laminar 
boundary layer and u”(x,, y) as turbulent boundary 
layer profile. The initial boundary layer thicknesses are 
S(k) = 0.003m and S(C) = 1.76($ and the initial 
profiles for Land c”correspond to a turbulent boundary 
layer. The unconditional distributions of velocity and 
kinetic energy correspond however at the beginning to 
a laminar boundary layer. The downstream develop- 
ment is dominated by a rapid growth of y in the lower 
part of the boundary layer which in turn leads to a 
growth of the unconditional kinetic energy and a 
change of velocity profile to the turbulent form which 
is achieved over a distance of the same order of 
magnitude (x - x0 - 0.4 m) as the transition region. 
After this initial region the development of the boun- 
dary layer is calculated until the Re,-number of the 
experiments of Kovasznay, Kibens and Blackwelder 
[7] is reached (6 = 0.09 m). The results at this point are 
presented in Figs. 5-8. The intermittency factor agrees 
well with the measurements [7,8] and the derivative 
dy/dy is much closer to the measured crossing fre- 
quency than in the jet (Fig. 2). The fluctuation 
intensities (Fig. 6) for turbulent zone, unconditional 
and non-turbulent zone velocity fluctuations agree 
reasonably with the measured u’/ii, profile. As for the 
jet, the turbulent zone fluctuations are larger than the 
measured values. The mean velocities in the outer part 
of the boundary layer (Fig. 7) show for all three 
statistics the same form as the experiment. Finally the 
model (47) for the non-turbulent zone fluctuations of 
u, is compared in Fig. 8 with the mesrements. 

According to Philips’ hypothesis [22] (p/u”,)-1” 
should vary linearly withy. The predictions are slightly 
curved but fairly close to the experimental values and 
can be considered satisfactory within the framework of 
a closure model based on the concept of a turbulent 
viscosity. 

5. CONCLUSIONS 

A closure model for turbulent shear flows based 
exclusively on conditional moments and the intermit- 
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FIG 5. Intermittency factor 1’ and &;idy in turbulent boun- 
dary layer (Re, = 21,000) compared with measurements (0 

and A [7]), + and x [8]. 
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FIG;. 6. Intensity of velocity fluctuations: (1) turbulent zone, 
(2) unconditional, (3) non-turbulent zone, compared with 

measurements [73 of uI/u , 

FK;. 7. Mean velocities in outer part of boundary layer: (1) 
turbulent zone, (2) unconditional (3) non-turbulent zone 

compared with measurements [7]. 

FIG. 8. Non-turbulent zone fluctuations compared wrth 
measurements [7] and Philips’ hypothesis (broken line). 

tency factor was developed. The model contains the 
equations for intermittency factor, the turbulent zone 
and non-turbulent zone mean velocities and kinetic 
energy and dissipation rate for the turb?Jlent zone. The 
main part of the paper was devoted to the closure of the 
equation for the intermittency factor: production of ;’ 
via the kinetic energy created in the turbulent zone and 
the inhomogeneity of y-field, destruction by viscous 
effects and turbulent diffusion. The conditional mo- 
ment equations contain a new-term group represent- 
ing the effect of moving interface, and models repre- 
senting them were suggested. The results obtained with 
this model give satisfactory agreement for intermit- 
tency factor and conditional moments of first order. 
This shows the possibility of treating turbulent flows, 
in which transport processes across interfaces play an 
important role (such as turbulent flames) with con- 
ditional turbulence models. Such models would allow 
the transport process across the interface to be dealt 
with explicitly because there are terms in the equations 
accounting for them. 
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APPENDIX 

The conditional statistics introduced in Section 2.2 imply 
various relations between conditional and unconditional 
quantities. The mean values are related by 

as a consequence of (11) and (13). The proper mean values of 
the fluctuating parts are 

&&O, 

but mean values with respect to different statistics are 
generally non-zero. In particular the following relations hold 
for mean values of fluctuating components. For the con- 
ditional fluctuations averaged unconditionally we obtain : 

<dJ*> = (1 - Y)($ - $), (A2) 

<9O> = Y (i - &)* (A31 

and for the unconditional fluctuation it follows that: 

and 

h, 

d4’ - = - f (4*n,s(S)) 
ax, 

rv 

648) 

(A9) 

Note that (AS) and (A9) imply that the point-statistical 
mean values of differentiated fluctuations do not necessarily 
vanish. Finally the correlations involving differentiation can 
be evaluated as 

and 

For non-turbulent zone quantities follows 
h, 

(All) 

w” -= 
ax, & (4°0(W 

and 

- 
a40 - =- 
at &<4J0wwh (AI31 

and for correlations 
h* rJ 

Specialization of r$ and $ can be used to produce relations 
for higher order moments. Finally we note a consequence of 
(A6) and the fact that the velocity is continuous across the 
interface for the point-statistical part of the momentum 
sources F,. Denote by 

8 = - <4*>, 

4 = - (c#P). 

(A4) 

645) 
S, = <(W + pn,)W)) - v(~“p(S1) 

Furthermore we note that 

@ = y4* + (1 - Y)@. (A6) 
- v& <u,ngS(S)), 

8 

The Znd-order moments are given by then 

<VY> = YG + (1 - y)G 
s,+y+so(1-Y)=s’+2(B_v”)dydy # il ” 2 

= ax, ax, (‘416) 

+ Y(1 - Y)($ - 4)($ - $). (A7) from (A6) and (A7). 
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MODELE DE FERMETURE POUR LES ECOULEMENTS TURBULENTS 
ET INTERMITTENTS 

R&m&On dtveloppe un modkle de fermeture pour les tcoulements turbulents “Shear flows”, exclusive- 
ment B partir des moments conditionnels et du facteur d’intermittence. Le modble contient les tyuations du 

facteur d’intermittence, des vitesses moyennes de la zone turbulente et de la zone non-turbulente, de I’Cnergie 

cinktique et du taux de dissipation pour la zone turbulente. Le mod&le est appliquk g la prkvision des jets 

plans et des couches limites et ii donne des rtsultats satisfaisants pour le facteur d’intermittence et pour les 

moments du premier ordre. 

Zusammenfassung-Ein Schliessungsmodell fiir turbulente Scherstrtimungen, das nur auf bedingten 
Momenten und Intermittenzfaktor beruht, wird entwickelt. Das Model1 umfasst die Gleichumgen fiir 
Intermittenzfaktor, mittlere Geschwindigkeiten in turbulenter und nichtturbulenter Zone sowie kinetische 
Energie und Dissipationsrate in der turbulenten Zone. Das Model1 zeigt bei Anwendung auf den ebenen 
Freistrahl und die Grenzschicht zufriedenstellende Resultate fiir Intermittenzfaktor und Momente erster 

Ordung. 

3AMKHYTAII MOAE.JIb flJI5I nEPEME~AIOII@IXCR TYP6YJIEHTHbIX TEYEHHR 

AHHo+aqnn - npe&“OmeHa 3aMKHyTal MOLleJlb AJIll Typ6yJIeHTHOrO CnBHrOBOrO TeYeHBII. OCHOBaHHaI 

TO,,bKO Ha yCJIOBHbIX MOMeHTaX W K03@@iUBeHTe nepeMeX(aeMoCTEi. Monenb COnepWiT ypaBHeHH% 

JlJlSl KOY$I$RUWeHTa nepMemaeMOCTii, CpeZlHHX CKOpOCTeii B 30HaX Typ6yJieHTHOrO U HeTy$J6y,WHTHOrO 

TeWHHR. a TaKYe KHHeTU’feCKOii 3Hepl-kfH W CKOpOCTki lW2CHnaUEiLi Ll 30He Typ6yJIeHTHOrO TeYeHHSl. 

Monenb AcnonbsyeTcn nna pacseTa nnocKUx cTpyii 5i norpamiwibrx cnoen w naer yaoBneTBopaTenbHble 

pe3yJIbTaTbI &W K03~$WWeHTa nepeMemaeMOCTH A MOMeHTOB BTOpOrO nOpWtKa. 


